Nonlinear Vibration and Stability Analysis of Beam on the Variable Viscoelastic Foundation

Authors

  • Ali Khademifar Mechanical Engineering Department of Concordia University, Montreal, Canada
  • Mohammad Choulaie Department of Mechanical Engineering Faculty of Engineering Guilan University
Abstract:

The aim of this study is the investigation of the large amplitude deflection of an Euler-Bernoulli beam subjected to an axial load on a viscoelastic foundation with the strong damping. In order to achieve this purpose, the beam nonlinear frequency has been calculated by homotopy perturbation method (HPM) and Hamilton Approach (HA) and it was compared by the exact solutions for the different boundary conditions such as simple-simple, clamped-simple and clamped-clamped which showed a good accuracy in results. In addition, to find the deflection of the nonlinear Euler-Bernoulli beam, the problem has been solved based on homotopy perturbation method and modified differential transform method (MDTM) and finally, the results were compared by Rung-Kutta exact solutions. The derived deflection results by two mentioned methods had a good agreement with the exact RK4 solutions. By considering the paper results, buckling force is increased for each case permanently by increase in the boundary rigidity for a constant value of system amplitude (A). As a final comparison, in based on paper results, the buckling force is arisen by increasing the system amplitude for each case.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Nonlinear Vibration Analysis of an Euler-Bernoulli Beam Resting on a Nonlinear Elastic Foundation under Compressive Axial Force

This paper studies the nonlinear vibration analysis of a simply supported Euler-Bernoulli beam resting on a nonlinear elastic foundation under compressive axial load using nonlinear normal modes concept in the case of three-to-one (3:1) internal resonance. The beam’s governing nonlinear PDE of motion and also its boundary conditions are derived and then solved using the method of Multiple Time ...

full text

Nonlinear Vibration Analysis of a cantilever beam with nonlinear geometry

Analyzing the nonlinear vibration of beams is one of the important issues in structural engineering. According to this, an impressive analytical method which is called Modified Iteration Perturbation Method (MIPM) is used to obtain the behavior and frequency of a cantilever beam with geometric nonlinear. This new method is combined by the Mickens and Iteration methods. Moreover, this method don...

full text

Nonlinear Vibration Analysis of a Cylindrical FGM Shell on a Viscoelastic Foundation under the Action of Lateral and Compressive Axial Loads

In this paper, the nonlinear vibration analysis of a thin cylindrical shell made of Functionally Graded Material (FGM) resting on a nonlinear viscoelastic foundation under compressive axial and lateral loads is studied. Nonlinear governing coupled partial differential equations of motions (PDEs) for cylindrical shell are derived using improved Donnell shell theory. The equations of motions (EOM...

full text

Modified Multi-level Residue Harmonic Balance Method for Solving Nonlinear Vibration Problem of Beam Resting on Nonlinear Elastic Foundation

Nonlinear vibration behavior of beam is an important issue of structural engineering. In this study, a mathematical modeling of a forced nonlinear vibration of Euler-Bernoulli beam resting on nonlinear elastic foundation is presented. The nonlinear vibration behavior of the beam is investigated by using a modified multi-level residue harmonic balance method. The main advantage of the method is ...

full text

Nonlinear Vibration Model for Initially Stressed Beam-Foundation System

An analytical solution for nonlinear vibration of an initially stressed beam with elastic end restraints resting on a nonlinear elastic foundation is obtained. As a first step in solving nonlinear vibration equation, the linear vibration mode functions for a beam with elastic end restraints resting on a linear elastic foundation are obtained. Then, the nonlinear vibration equation is solved by ...

full text

Spectrally formulated finite element for vibration analysis of an Euler-Bernoulli beam on Pasternak foundation

  In this article, vibration analysis of an Euler-Bernoulli beam resting on a Pasternak-type foundation is studied. The governing equation is solved by using a spectral finite element model (SFEM). The solution involves calculating wave and time responses of the beam. The Fast Fourier Transform function is used for temporal discretization of the governing partial differential equation into a se...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 48  issue 1

pages  99- 110

publication date 2017-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023